Unsupervised robust nonparametric learning of hidden community properties

نویسندگان

  • Mikhail A. Langovoy
  • Akhilesh Gotmare
  • Martin Jaggi
  • Suvrit Sra
چکیده

We consider learning of fundamental properties of communities in large noisy networks, in the prototypical situation where the nodes or users are split into two classes, e.g., according to their opinions or preferences on a topic. We propose a nonparametric, unsupervised, and scalable graph scan procedure that is, in addition, robust against a class of powerful adversaries. In our setup, one of the communities can fall under the influence of a strong and knowledgeable adversarial leader, who knows the full network structure, has unlimited computational resources and can completely foresee our planned actions on the network. We prove strong consistency of our results in a setup with minimal assumptions. In particular, the learning procedure estimates the baseline activity of normal users asymptotically correctly with probability 1; the only assumption being the existence of a single implicit community of asymptotically negligible logarithmic size. We provide experiments on real and synthetic data to illustrate the performance of our method, including examples with adversaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Location and Spread Measures for Nonparametric Probability Density Function Estimation

Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability de...

متن کامل

Density Estimation under Independent Similarly Distributed Sampling Assumptions

A method is proposed for semiparametric estimation where parametric and nonparametric criteria are exploited in density estimation and unsupervised learning. This is accomplished by making sampling assumptions on a dataset that smoothly interpolate between the extreme of independently distributed (or id) sample data (as in nonparametric kernel density estimators) to the extreme of independent i...

متن کامل

Alert correlation and prediction using data mining and HMM

Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...

متن کامل

Unsupervised Discovery of Student Strategies

Unsupervised learning algorithms can discover models of student behavior without any initial work by domain experts, but they also tend to produce complicated, uninterpretable models that may not predict student learning. We propose a simple, unsupervised clustering algorithm for hidden Markov models that can discover student learning tactics while incorporating student-level outcome data, cons...

متن کامل

Nonparametric Estimation of Multi-View Latent Variable Models

Spectral methods have greatly advanced the estimation of latent variable models, generating a sequence of novel and efficient algorithms with strong theoretical guarantees. However, current spectral algorithms are largely restricted to mixtures of discrete or Gaussian distributions. In this paper, we propose a kernel method for learning multi-view latent variable models, allowing each mixture c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03494  شماره 

صفحات  -

تاریخ انتشار 2017